
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

TBB: parallel_pipeline

OBJECTIVES
▪ Learn about software pipelining.

▪ Implement pipelining via Threading Building Blocks (TBB) Library in C++: parallel_pipeline

USEFUL INFORMATION
▪ Refer to the Tutorial: Embedded Intel for the source files used in this Tutorial.

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides for the Terasic DE2i-150 Board.

▪ Board Setup: Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

 Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

ACTIVITIES

FIRST ACTIVITY: MODULUS

▪ For two n-element vectors �⃗� and �⃗⃗�, we want to calculate the modulus of each pair of elements and place the results on 𝑐.

𝑐(𝑖) = √𝑎(𝑖)2 + 𝑏(𝑖)2

▪ Example: a = [3 4 1 10 6 1.5 2.5 5 8 7] b = [4 3 1 2 8 1.5 6 12 15 24]

✓ Result: c = [5 5 1.4142 10.198 10 2.1213 6.5 13 17 25[

Pipelined implementation
▪ Though there are many ways to implement this in a parallel fashion (including map), here we use a serial-parallel-serial

pipeline for illustration purposes.

▪ Using parallel_pipeline, we define 3 filters and the associated functors. Each functor is defined as a class.

✓ Caution: Because the body object provided to the filters of the parallel_pipeline might be copied, its operator() should

not modify the body. Otherwise the modification might or might not become visible to the thread that invoked

parallel_pipeline, depending upon whether operator() is acting on the original or a copy. As a reminder of this nuance,

parallel_pipeline requires that the body object's operator() be declared const.

▪ We invoke parallel_pipeline within a function. Input to each stage input parameter to the operator() inside each functor.

When invoking the functor in make_filter we can feed other parameters (via parameterized constructor), but this is not

data that flows through the pipeline. The data type of the input/output of each stage is specified in make_filter <X,Y>.
void RunPipeline (int ntoken, int n, float *a, float *b, float *c) {

 parallel_pipeline(ntoken, // ‘filter_mode’ instead on ‘filter’ in latest tbb

 make_filter< void, MyMod>(filter_mode::serial_in_order, my_in(a,b,n))

 & make_filter<MyMod, float>(filter_mode::parallel, my_transf())

 & make_filter<float, void>(filter_mode::serial_in_order, my_out(c)));

}

✓ First Stage (defined by functor my_in): Syntax-wise, this stage has no input (only a flow_control object is passed to

its functor). Input parameters to functor: arrays a and b, and variable n. The stage outputs a MyMod value (pair of floats).
class my_in {

 float *a;

 float *b;

 int n;

 mutable int i;

public:

 my_in (float *ap, float *bp, int np): a(ap), b(bp), n(np), i(0) {} // a=ap, b=bp, n=np, i=0

 MyMod operator () (flow_control& fc) const {

 MyMod t;

 const MyMod ret_val = {.av = 0 , .bv = 0 };

 if (i < n) { t.av = *(a+i); t.bv = *(b+i); i++; return t; }

 else { fc.stop(); return ret_val; } // ‘return ret_val’ (NULL values) required in last tbb

 }

};

 MyMod class:
class MyMod {

public:

 float av;

 float bv;

};

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

 Note that we use the index i (that changes during the execution of the pipeline) to determine if we reached the end

of the arrays. The way they are defined, a and b do not change their values.

✓ Second stage (defined by functor my_transf): It performs the operation. As it is a relatively complex operation, it is

advantageous to use a parallel stage so that elements can be processed concurrently.
class my_transf {

public:

 float operator() (MyMod input) const { // 'input': implicitly provided by RunPipeline

 float result;

 result = sqrt ((input.av)*(input.av) + (input.bv)*(input.bv));

 return result;

 }

};

✓ Third Stage (defined by functor my_out): Syntax-wise, this stage has not outputs. The input parameter to the functor is

the array c and this stage places elements on this array c.
class my_out {

 mutable int j; // so it can be modified by a 'const' operator()

public:

 float *ci;

 my_out (float *cp): ci(cp), j(0) {} // initialize constructor. ci = cp, j = 0

 void operator () (float result) const {

 *(ci+j) = result;

 j++;

 }

};

▪ This is an example of execution of the pipeline:

int main () {

 int n = 10; // Feel free to modify n

 int ntoken = 16;

 float a[10], b[10], c[10];

 int i;

 for (i=0; i < n; i++) {

 a[i] = sin(i * 3.1416/n);

 b[i] = tan(i * 3.1416/n); }

 RunPipeline (ntoken, n, a, b, c);

 cout << "Result:\n";

 for (i = 0; i < n; i++) { cout << c[i] << "\n"; }

 return 0;

}

▪ Fig. 1 depicts the pipeline and the operations at each stage.

▪ Application files: pip_mod.cpp

✓ We use using namespace tbb to avoid including the prefix tbb before each identifier used by the tbb library.

▪ Compile this application: g++ pip_mod.cpp -ltbb -o pip_mod

▪ Execute this application: Feel free to modify n in order to compute larger sequences
./pip_mod

Figure 1. Serial-parallel-serial pipeline. Data provided as input parameters a and b. Stage 1 feeds input items into the

pipeline. Parallel Stage 2 performs the modulus of the MyMod item (items can be processed in parallel). Stage 3 places the

result on an output array.

Stage 1 Stage 2 Stage 3

..
.

b

b+n-1

R
e
su

ltin
g
 A

rra
y

MyMod float

b+2

 2

..
.

c

c+n-1

c+2

..
.

a

a+n-1

a+2

float float

 = 2+ 2

x y

r

j=2 r

n

a b n c

void void

data

item

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

SECOND ACTIVITY: SUM OF SQUARED VALUES

▪ For an n-element vector 𝑝, we want to calculate the sum of squared elements and place the results on a variable .

 = ∑ 𝑝(𝑖)2
𝑙𝑎𝑠𝑡−

𝑖=𝑓𝑖𝑟𝑠𝑡

▪ In the code, the array 𝑝 is defined by pointer first. The last element is given by last-1. Thus, the pointers to every

element of the array 𝑝 are given by [first, last).

Pipelined implementation

▪ Though this is a reduction problem (suited parallel_reduce), we use a serial-parallel-serial pipeline for illustration purposes.

▪ Using parallel_pipeline, we define 3 filters and the associated functors. Each functor is defined in a compact expression.

▪ Here, we show a function (SumSquare) where parallel_pipeline is invoked. Note that we define the functors , , 2 using

compact lambda expressions (no need for class definition). This requires the -std=c+11 modifier at compilation.

float SumSquare(float* first, float* last) {

 float sum = 0;

 parallel_pipeline (16, // ntoken = 16

 make_filter<void,float*>(filter_mode::serial_in_order,

 [&](flow_control& fc)-> float* { //functor g0: exprsn
 if(first < last) {

 return first++;

 } else {

 fc.stop();

 return NULL;

 }

 }) &

 make_filter<float*,float>(filter_mode::parallel,

 [](float* p) { return (*p)*(*p); }) &

 make_filter<float,void> (filter_mode::serial_in_order,

 [&](float x) { sum += x; }));

 return sum;

}

✓ In these compact lambda expressions, the input to each stage is specified before the statements in {…}, whereas the

outputs are specified via the return keyword. We can also feed input parameters to the functors associated with stage

just by using the available variables (these parameters do not flow through the pipeline.

▪ This is an example of execution of the pipeline:

int main() {

 int i;

 float fi[101], *fo, ff;

 for (i = 0; i < 100; i++) fi[i] = i;

 fo = &fi[100]; // fi[100] will not be considered

 ff = SumSquare (fi, fo); // first=fi, last = fo

 cout << ff << "\n"; // sum of the squares of 0 to 99: 328350

 return 0;

}

▪ Fig. 2 depicts the pipeline and the operations at each stage.

▪ Application files: pip_sumsq.cpp

▪ Compile this application: g++ -std=c++11 pip_sumsq.cpp -ltbb -o pip_sumsq

▪ Execute this application: ./pip_sumsq

Figure 2. Serial-parallel-serial pipeline. Data is provided as input parameters (pointers first and last). Stage 1 feeds input

items into the pipeline. Parallel Stage 2 performs the squaring of an item (items can be processed in parallel). Stage 3

accumulates the result one item at a time.

Stage 1 Stage 2 Stage 3

..
.

first

last

last-1

A
rra

y
 to

p
ro

ce
ss

*float

sum

float

p

*p x sum=sum+x

 2

first

void void

&sumlast

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 4 Daniel Llamocca

THIRD ACTIVITY: PROCESSING VECTORS

▪ We want to process NV sets of two n-element vectors, where a set of two vectors constitutes an item fed to the pipeline.

▪ For each set (vectors ⃗ and ⃗), we compute a resulting vector whose elements are the element-wise powering operation:

 (𝑘) = (𝑘)𝑦(𝑘), 𝑘 = 0: 𝑛 − 1
▪ Then, we compute the average for the resulting vector ⃗.

▪ For NV sets of two n-element vectors, we get an output vector of NV elements.

Pipelined implementation

▪ Using parallel_pipeline, we define 3 filters and the associated functors (each defined in a class).

✓ First Stage: The parameters passed to the functor are: two 2D data arrays (2 NVn matrices), a 2D array, n, and NV.

This stage returns two n-element vectors (⃗ and ⃗), and a pointer to store the resulting vector ⃗ each time.

✓ Second Stage: It computes and returns (𝑖) = (𝑖)𝑦(𝑖) for 𝑖 = 0,… , 𝑛 − 1. No parameters passed to the functor.
 We originally attempted to pass the pointer to vector ⃗ as a parameter (only one array allocated). However, this could

potentially create race conditions as two or more instances of the parallel stage would access the same data.
✓ Third Stage: It computes the average of an incoming vector ⃗ and store the result in an array. The pointer of the resulting

array (c) is passed as a parameter to the functor.

▪ We first show a function where parallel_pipeline is invoked:
void RunPipeline (int ntoken, int n, int NV, double **a, double **b, double *c, double *p) {

 parallel_pipeline(ntoken,

 make_filter< void, MyPair>(filter_mode::serial_in_order, my_in(a,b,r,n,NV))

 & make_filter<MyPair, double*>(filter_mode::parallel, my_transf())

 & make_filter<double*, void>(filter_mode::serial_in_order, my_out(c,n)));

}

✓ First Stage (defined by functor my_in): Data is stored in 2D arrays a and b. The stage outputs 3 vectors (MyPair class):
class my_in {

 double **a;

 double **b;

 double **r;

 int n;

 int NV;

 mutable int i;

public:

 my_in (double **ap, double **bp, double **rp, int np, int NVp): a(ap), b(bp), r(rp),

 n(np), NV(NVp), i(0) {}

 MyPair operator () (flow_control& fc) const {

 MyPair t;

 const MyPair ret_val = {.x = NULL, .y = NULL, .r=NULL, .n = 0 };

 if (i < NV) {

 t.x = *(a+i); t.y = *(b+i); t.r = *(r+i); t.n = n;

 i++;

 return t; }

 else

 { fc.stop(); return ret_val; } // ‘return ret_val’ (NULL values) required in last tbb

 }

};

 MyPair class:
class MyPair {

public:

 double *x;

 double *y;

 double *r;

 int n;

};

 Note that we use the index i (that changes during the execution of the pipeline) to determine if we reached the end

of the arrays. The way they are defined, a and b do not change their values.

✓ Second stage (defined by functor my_transf): It performs the element-wise powering operation. As it is a relatively

complex operation, it is advantageous to use a parallel stage so that items can be processed concurrently.
class my_transf {

public:

 double* operator() (MyPair input) const {

 size_t i;

 double *result = input.r;

 for (i = 0; i < input.n; i++) result[i] = pow (input.x[i], input.y[i]);

 return result;

 }

};

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

✓ Third Stage (defined by functor my_out): It averages the incoming vectors ⃗ (from the second stage). Syntax-wise, the

stage has no outputs, but this stage places the result in the array c (provided as an input parameter to its functor).
class my_out {

public:

 mutable int j; // so it can be modified by a 'const' operator()

 double *ci;

 int n;

 my_out (double *cp, int np): ci(cp), n(np), j(0) {} // ci = cp, n = np, j=0

 void operator () (double *rt) const {

 size_t k;

 double tmp = 0;

 for (k = 0; k < n; k++) tmp = tmp + rt[k];

 *(ci+j) = tmp/n;

 j++;

 }

};

▪ This is an example of execution of the pipeline:

int main () {

 int n = 10; // Length of each vector

 int NV = 20; // # of vectors

 int ntoken = 16;

 double **a, **b, **r, *p;

 int i, j;

 a = (double **) calloc (NV, sizeof(double *));

 b = (double **) calloc (NV, sizeof(double *));

 r = (double **) calloc (NV, sizeof(double *)); // To hold results in Stage 2

 c = (double *) calloc (NV, sizeof(double));

 for (i=0; i < NV; i++) { // 'NV' vectors

 a[i] = (double *) calloc (n, sizeof(double));

 b[i] = (double *) calloc (n, sizeof(double));

 r[i] = (double *) calloc (n, sizeof(double)); }

 for (i=0; i < NV; i++)

 for (j=0; j < n; j++) { a[i][j] = 9.0; b[i][j] = 0.5; }

 RunPipeline (ntoken, n, NV, a, b, r, c);

 cout << "Result:\n"; for (i = 0; i < n; i++) cout << c[i] << "\n";

 free(c);

 for (i = 0; i < n; i++) { free (a[i]); free(b[i]); free(r[i]); }

 free(a); free(b); free(r);

 return 0;

}

▪ Fig. 3 depicts the pipeline and the operations at each stage. Recall that an input item is defined as two n-element vectors.

Figure 3. Serial-parallel-serial pipeline. Data is extracted from two 2D arrays. Stage 1 feeds input data (two n-element

vectors, and a pointer to an array) into the pipeline. Parallel Stage 2 performs the element-wise powering operation. Stage 3

computes the average of the incoming vector and places the result on an output array.

Stage 1 Stage 2 Stage 3

R
e
su

ltin
g
 A

rra
y

MyPair *double

..
.

c

c+NV-1

c+2

*double

j=2 avg(r)

...

...

...

...

...

..
.

..
.

..
.

..
.

..
.

...

...

...

...

...

..
.

..
.

..
.

..
.

..
.

a[0]

a[i]

...
*double ...

int n

NV

n

x

y

...r

a b

n

void

NV

c n

void

r

*double ...r

...

...

...

...

..
.

..
.

..
.

..
. NV

r[0]

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 6 Daniel Llamocca

▪ The array r (NVn elements) is only used so that Stage 1 can pass pointers to a 1-D array. This is needed as we need to

store the results of the element-wise powering operation, and the array needs to be allocated.
✓ Note that for every data item, we pass a different pointer to a 1-D array. This is because the 2nd Stage is parallel, and

there can be several invocations of it, and each should have their own independent resulting array.

Application files: pip_avgvec.cpp

▪ Compile this application: g++ pip_avgvec.cpp -ltbb -o pip_avgvec

▪ Execute this application: Feel free to modify n in order to compute larger sequences
./pip_avgvec

	Objectives
	Useful Information
	Activities
	First Activity: Modulus
	Second Activity: Sum of squared values
	Third Activity: Processing vectors

